Extremal Ω-plurisubharmonic Functions as Envelopes of Disc Functionals

نویسنده

  • Benedikt Steinar Magnússon
چکیده

For each closed, positive (1, 1)-current ω on a complex manifold X and each ω-upper semicontinuous function φ on X we associate a disc functional and prove that its envelope is equal to the supremum of all ω-plurisubharmonic functions dominated by φ. This is done by reducing to the case where ω has a global potential. Then the result follows from Poletsky’s theorem, which is the special case ω = 0. Applications of this result include a formula for the relative extremal function of an open set in X and, in some cases, a description of the ω-polynomial hull of a set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Discs, Global Extremal Functions and Projective Hulls in Projective Space

Using a recent result of Lárusson and Poletsky regarding plurisubharmonic subextensions we prove a disc formula for the quasiplurisubharmonic global extremal function for domains in P. As a corollary we get a characterization of the projective hull for connected compact sets in P by the existence of analytic discs.

متن کامل

Some Remarks on Approximation of Plurisubharmonic Functions

Let Ω be a domain in Cn. An upper semicontinuous function u : Ω → [−∞,∞) is said to be plurisubharmonic if the restriction of u to each complex line is subharmonic (we allow the function identically −∞ to be plurisubharmonic). We say that u is strictly plurisubharmonic if for every z0 ∈ Ω there is a neigbourhood U of z0 and λ > 0 such that u(z) − λ|z|2 is plurisubharmonic on U . We write PSH(Ω)...

متن کامل

Plurisubharmonic functions in calibrated geometry and q-convexity

Let (M,ω) be a Kähler manifold. An integrable function φ on M is called ω-plurisubharmonic if the current ddφ ∧ ω is positive. We prove that φ is ωplurisubharmonic if and only if φ is subharmonic on all q-dimensional complex subvarieties. We prove that a ωplurisubharmonic function is q-convex, and admits a local approximation by smooth, ω-plurisubharmonic functions. For any closed subvariety Z ...

متن کامل

The General Definition of the Complex Monge-Ampère Operator on Compact Kähler Manifolds

We introduce a wide subclass F(X,ω) of quasi-plurisubharmonic functions in a compact Kähler manifold, on which the complex Monge-Ampère operator is well-defined and the convergence theorem is valid. We also prove that F(X,ω) is a convex cone and includes all quasi-plurisubharmonic functions which are in the Cegrell class.

متن کامل

A Note on Plurisubharmonic Defining Functions in C

Let Ω ⊂⊂ C n , n ≥ 3, be a smoothly bounded domain. Suppose that Ω admits a smooth defining function which is plurisubharmonic on the boundary of Ω. Then the Diederich-Fornaess exponent can be chosen arbitrarily close to 1, and the closure of Ω admits a Stein neighborhood basis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009